就像打了一劑強心針,當(dāng)世界上第一臺超越早期經(jīng)典計算機的光量子計算機橫空出世后,人們對人工智能時代的期待似乎有了更多的底氣:超越經(jīng)典的量子計算機已經(jīng)有了,打敗超級計算機的量子計算機還會遠嗎?
一旦后者實現(xiàn),人類將再次以計算能力為傲,窺探人類大腦的奧秘,從而掃除人工智能研究的一大障礙。目前來看,面對人類大腦,這個雖然只有1.5公斤左右重,卻擁有1011個神經(jīng)元的家伙,讓人類束手無策——要模擬整個大腦的計算能力,世界上目前任何一臺計算機都難以勝任。
在近日由中國科學(xué)院學(xué)部主辦,中國科學(xué)院自動化研究所等協(xié)辦的“腦科學(xué)與人工智能”科學(xué)與技術(shù)前沿論壇上,就有不少業(yè)內(nèi)人士提出這樣的遐想:建設(shè)支持深度學(xué)習(xí)的新型計算機群,已成為一些人工智能研究的必然選擇,那么人工智能研究究竟需不需要量子計算機那樣的計算能力?
“我們今天的科學(xué)家,尤其是計算機科學(xué)家,把‘計算’用得太狠了,對‘計算’的依賴甚至有些‘貪得無厭’了!”中國工程院院士、中國人工智能學(xué)會理事長李德毅卻在論壇上給大家潑了冷水。在他看來,人工智能學(xué)者不能只盯著“計算認知”,一味要求 “人腦”研究的步伐有多快,而要拿出更多的精力放在“記憶認知”和“交互認知”上。
腦科學(xué)能啟發(fā)人工智能的并不多?
李德毅之所以對“計算認知”不感冒,還要從谷歌公司的一則報道說起——
2015年5月15日,谷歌對外稱該公司旗下無人駕駛汽車有上百萬英里的測試經(jīng)驗,大致相當(dāng)于人類75年的駕齡。
“這75年的駕齡是如何‘計算’出來的?”這引發(fā)了李德毅的思考:當(dāng)無人車上路、發(fā)駕照提上日程,駕駛認知“度量”已經(jīng)成為各國交管部門當(dāng)務(wù)之急時,腦認知該如何度量?信息是用“比特”來度量,能量是用“焦耳”來度量,那么腦認知呢?
腦科學(xué)學(xué)者似乎并未給出這樣的答案,人工智能學(xué)者也就無從得到啟示。
這成了一個隱喻:腦科學(xué)、人工智能,兩個同屬21世紀的前沿學(xué)科,在過去數(shù)十年間彼此相對獨立,鮮有交叉。
中國科學(xué)院外籍院士、中國科學(xué)院神經(jīng)科學(xué)研究所所長蒲慕明在當(dāng)天的論壇上也提到,不管是國內(nèi)還是國外,都是如此,不過隨著研究手段不斷豐富,研究領(lǐng)域不斷突破,兩者的交叉融合成為熱點,甚至出現(xiàn)一個新的研究名詞,類腦智能。美國、歐盟都相繼啟動相關(guān)研究計劃,中國也啟動了腦計劃。他說,中國的計劃是將腦科學(xué)和人工智能結(jié)合得最為緊密的。
比如,現(xiàn)在流行的深度學(xué)習(xí),就是基于人工神經(jīng)網(wǎng)絡(luò)的一個應(yīng)用,這些人工神經(jīng)網(wǎng)絡(luò)都可以從神經(jīng)科學(xué)的一些規(guī)律中得到靈感。蒲慕明說,比如可以借鑒神經(jīng)突觸的可塑性、記憶儲存、提取與消退,等等。
不過他也承認,目前的腦科學(xué)研究能啟發(fā)人工智能的并不是特別多。
蒲慕明給出一個類比,當(dāng)前的腦科學(xué)研究,僅相當(dāng)于物理、化學(xué)等學(xué)科在19世紀末期的研究水平,“要完全理解大腦,可能是幾個世紀的事情,而不是我們這個世紀就可以達到的。”他說。
那為何還要做類腦研究,蒲慕明說,必須要在這個時候做一些適當(dāng)?shù)膽?yīng)用,假如不把已經(jīng)知道的知識應(yīng)用到對腦疾病的診斷、干預(yù)和治療上,那么到2050年我們的醫(yī)療系統(tǒng)很可能要面臨崩潰——那時你會發(fā)現(xiàn)仍然沒有一個腦疾病能夠治愈。
相應(yīng)地,人工智能的應(yīng)用也是如此。他說,不一定非要完全搞清楚,神經(jīng)科學(xué)一些具有階段性的成果,也可以給人工智能的發(fā)展提供啟發(fā)。
什么是人類最重要的智能行為?
中國科學(xué)院院士、中國科學(xué)院自動化研究所研究員譚鐵牛就在現(xiàn)有的研究基礎(chǔ)上,得出一個結(jié)論:“模式識別”是人類最重要的智能行為,也是人工智能重要的研究內(nèi)容——機器的“模式識別”能力,在一定程度或者很大程度上反映了機器智能“類人”的程度。