9. Express Scripts Holding Co.的產(chǎn)品制造。該公司發(fā)現(xiàn)那些需要服藥的人常常也是最可能忘記服藥的人。因此,他們開(kāi)發(fā)了一個(gè)新產(chǎn)品:會(huì)響鈴的藥品蓋和自動(dòng)的電話呼叫,以此提醒患者按時(shí)服藥。
10. Infinity Property & Casualty Corp.的黑暗數(shù)據(jù)(dark data)。Laney對(duì)于黑暗數(shù)據(jù)的定義是,那些針對(duì)單一目標(biāo)而收集的數(shù)據(jù),通常用過(guò)之后就被歸檔閑置,其真正價(jià)值未能被充分挖掘。在特定情況下,這些數(shù)據(jù)可以用作其他用途。該公司用累積的理賠師報(bào)告來(lái)分析欺詐案例,通過(guò)算法挽回了1200萬(wàn)美元的代位追償金額。
十大數(shù)據(jù)挖掘領(lǐng)域的經(jīng)典算法
1. C4.5
C4.5算法是機(jī)器學(xué)習(xí)算法中的一種分類決策樹(shù)算法,其核心算法是ID3算法. C4.5算法繼承了ID3算法的優(yōu)點(diǎn),并在以下幾方面對(duì)ID3算法進(jìn)行了改進(jìn):
1) 用信息增益率來(lái)選擇屬性,克服了用信息增益選擇屬性時(shí)偏向選擇取值多的屬性的不足;
2) 在樹(shù)構(gòu)造過(guò)程中進(jìn)行剪枝;
3) 能夠完成對(duì)連續(xù)屬性的離散化處理;
4) 能夠?qū)Σ煌暾麛?shù)據(jù)進(jìn)行處理。
C4.5算法有如下優(yōu)點(diǎn):產(chǎn)生的分類規(guī)則易于理解,準(zhǔn)確率較高。其缺點(diǎn)是:在構(gòu)造樹(shù)的過(guò)程中,需要對(duì)數(shù)據(jù)集進(jìn)行多次的順序掃描和排序,因而導(dǎo)致算法的低效。
2. The k-means algorithm 即K-Means算法
k-means algorithm算法是一個(gè)聚類算法,把n的對(duì)象根據(jù)他們的屬性分為k個(gè)分割,k < n。它與處理混合正態(tài)分布的最大期望算法很相似,因?yàn)樗麄兌荚噲D找到數(shù)據(jù)中自然聚類的中心。它假設(shè)對(duì)象屬性來(lái)自于空間向量,并且目標(biāo)是使各個(gè)群組內(nèi)部的均方誤差總和最小。
3. Support vector machines
支持向量機(jī),英文為Support Vector Machine,簡(jiǎn)稱SV機(jī)(論文中一般簡(jiǎn)稱SVM)。它是一種監(jiān)督式學(xué)習(xí)的方法,它廣泛的應(yīng)用于統(tǒng)計(jì)分類以及回歸分析中。支持向量機(jī)將向量映射到一個(gè)更高維的空間里,在這個(gè)空間里建立有一個(gè)最大間隔超平面。在分開(kāi)數(shù)據(jù)的超平面的兩邊建有兩個(gè)互相平行的超平面。分隔超平面使兩個(gè)平行超平面的距離最大化。假定平行超平面間的距離或差距越大,分類器的總誤差越小。一個(gè)極好的指南是C.J.C Burges的《模式識(shí)別支持向量機(jī)指南》。van der Walt 和 Barnard 將支持向量機(jī)和其他分類器進(jìn)行了比較。
4. The Apriori algorithm
Apriori算法是一種最有影響的挖掘布爾關(guān)聯(lián)規(guī)則頻繁項(xiàng)集的算法。其核心是基于兩階段頻集思想的遞推算法。該關(guān)聯(lián)規(guī)則在分類上屬于單維、單層、布爾關(guān)聯(lián)規(guī)則。在這里,所有支持度大于最小支持度的項(xiàng)集稱為頻繁項(xiàng)集,簡(jiǎn)稱頻集。
5. 最大期望(EM)算法
在統(tǒng)計(jì)計(jì)算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中尋找參數(shù)最大似然估計(jì)的算法,其中概率模型依賴于無(wú)法觀測(cè)的隱藏變量(Latent Variabl)。最大期望經(jīng)常用在機(jī)器學(xué)習(xí)和計(jì)算機(jī)視覺(jué)的數(shù)據(jù)集聚(Data Clustering)領(lǐng)域。
6. PageRank
PageRank是Google算法的重要內(nèi)容。2001年9月被授予美國(guó)專利,專利人是Google創(chuàng)始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指網(wǎng)頁(yè),而是指佩奇,即這個(gè)等級(jí)方法是以佩奇來(lái)命名的。
PageRank根據(jù)網(wǎng)站的外部鏈接和內(nèi)部鏈接的數(shù)量和質(zhì)量倆衡量網(wǎng)站的價(jià)值。PageRank背后的概念是,每個(gè)到頁(yè)面的鏈接都是對(duì)該頁(yè)面的一次投票,被鏈接的越多,就意味著被其他網(wǎng)站投票越多。這個(gè)就是所謂的“鏈接流行度”——衡量多少人愿意將他們的網(wǎng)站和你的網(wǎng)站掛鉤。PageRank這個(gè)概念引自學(xué)術(shù)中一篇論文的被引述的頻度——即被別人引述的次數(shù)越多,一般判斷這篇論文的權(quán)威性就越高。
7. AdaBoost
Adaboost是一種迭代算法,其核心思想是針對(duì)同一個(gè)訓(xùn)練集訓(xùn)練不同的分類器(弱分類器),然后把這些弱分類器集合起來(lái),構(gòu)成一個(gè)更強(qiáng)的最終分類器 (強(qiáng)分類器)。其算法本身是通過(guò)改變數(shù)據(jù)分布來(lái)實(shí)現(xiàn)的,它根據(jù)每次訓(xùn)練集之中每個(gè)樣本的分類是否正確,以及上次的總體分類的準(zhǔn)確率,來(lái)確定每個(gè)樣本的權(quán)值。將修改過(guò)權(quán)值的新數(shù)據(jù)集送給下層分類器進(jìn)行訓(xùn)練,最后將每次訓(xùn)練得到的分類器最后融合起來(lái),作為最后的決策分類器。
8. kNN: k-nearest neighbor classification
K最近鄰(k-Nearest Neighbor,KNN)分類算法,是一個(gè)理論上比較成熟的方法,也是最簡(jiǎn)單的機(jī)器學(xué)習(xí)算法之一。該方法的思路是:如果一個(gè)樣本在特征空間中的k個(gè)最相似(即特征空間中最鄰近)的樣本中的大多數(shù)屬于某一個(gè)類別,則該樣本也屬于這個(gè)類別。