
圖2指紋圖像預(yù)處理步驟
最后,細(xì)節(jié)點被提取出來,細(xì)節(jié)點定義為:端點和分又點(如圖3),紋線端點是一條紋路的終結(jié)點,而紋線分叉點是一條紋路再次分開成為兩條紋路的點。這2種特征點在指紋圖像中出現(xiàn)的幾率最大、最穩(wěn)定,易于檢測,而且,足以描述指紋的唯一性。

圖3指紋細(xì)節(jié)點類型
兩幅指紋圖像的匹配主要是解決旋轉(zhuǎn)、平移和形變等問題。本文中,指紋匹配的輸入是2個特征點的點集尸與Q,其中一個點集P是從輸入的指紋圖像中提取出來的,另一個點集合Q則是預(yù)先從標(biāo)準(zhǔn)的指紋圖像中提取出來儲存在模板庫中。這2個點集合分別表示為

其中,電容傳感器工作原理記錄了點集P中第i個特征點的3條信息:坐標(biāo)、Y坐標(biāo)與方向,電容傳感器工作原理則記錄了點集Q中第j個特征點的3條信息:x坐標(biāo),y坐標(biāo)與方向。假設(shè)兩幅指紋圖可以完全匹配起來,則可通過對輸入的指紋圖作某種變換(旋轉(zhuǎn)、平移與伸縮)得到模板中的指紋圖,因此,點集P可以通過旋轉(zhuǎn)、平移與伸縮等變換近似成點集Q。
為了能夠?qū)⑤斎胫讣y圖像中的某一個特征點按照一定的變換方式轉(zhuǎn)換成模板指紋圖像中的相對應(yīng)位置,需要知道相應(yīng)的變換因子,△x與△y分別為x,y方向上的平移因子,△θ則是旋轉(zhuǎn)因子。匹配基準(zhǔn)點的確定是通過判斷這2個三角形的相似程度得到的,在求取了兩幅指紋圖像之間的匹配基準(zhǔn)點和變換因子后,本文對待識別指紋相對于模板指紋進(jìn)行旋轉(zhuǎn)、平移變換,以便判斷兩枚指紋是否來自于同一個手指。在本文中,求取變換后的待識別指紋的特征點坐標(biāo)位置和所在區(qū)域的紋線方向。然后,將變換后的待識別指紋特征點集疊加到模板指紋特征點集上,檢測2個特征點集合中相重合的特征點數(shù)目。由于本文中的匹配是一種非精確匹配,即使是一對匹配的特征點對,它們之問也不會完全重合,總是在位置、方向上存在有一定的偏差,所以,必須有一定的偏差容忍度。
為此,本文采用一種稱為界定盒的方法。對模板指紋特征點集中的每一個特征點,選取它周圍的一個矩形區(qū)域作為它的界定盒,只要變換后的待識別指紋中的特征點經(jīng)過疊加后落在這個區(qū)域之內(nèi),而且,方向基本一致,可以認(rèn)為這2個特征點對是一對匹配的特征點。
最后,算法統(tǒng)計所有相匹配的特征點數(shù)目,通過式(1)轉(zhuǎn)換成匹配分?jǐn)?shù),其中,maxscore是通過疊加匹配的細(xì)節(jié)點個數(shù)得到的最大匹配得分,Temp—Num和Input—Num分別是模板和輸入指紋的細(xì)節(jié)點數(shù)目。

計算的匹配分?jǐn)?shù)代表了相比較的兩幅指紋的相似程度。參數(shù)值越大,相似性程度越高,而如果得分較小時,說明這一用戶不一定是其宣稱的用戶,訪問將被拒絕。
本文所使用的算法是一種典型的基于特征點坐標(biāo)模型的點模式匹配算法。它對匹配過程中最難的一步一基準(zhǔn)點的確定和變換參數(shù)的求取作了較深入的研究,根據(jù)3個近鄰的特征點之間的相互關(guān)系來確定基準(zhǔn)點、求取變換參數(shù)。該算法在一定程度上能夠加快基準(zhǔn)點的求取,從而提高整個匹配算法的速度。同時,該算法是根據(jù)多點來確定變換參數(shù),而不是通常意義上的一點,在一定程度上可以消除在特征提取過程中所引入的位置、角度的偏差,得到更為準(zhǔn)確的變換參數(shù)。
1.3光學(xué)和電容傳感器的融合
So,Sc是分別由光學(xué)傳感器和電容傳感器采集的圖像運用匹配算法所獲得的匹配分?jǐn)?shù),s融合后的分?jǐn)?shù)和S。So,Sc之間有如下關(guān)系
