SVM針對(duì)分類問題的前提假設(shè)直觀易懂,由此推演出的模型求解過程也是順理成章一氣呵成。我們通常先從最簡單的情況入手,假設(shè)數(shù)據(jù)是線性可分的。SVM認(rèn)為此時(shí)的最優(yōu)分類面,是使得樣本集到分類面的最小幾何距離最大化的超平面,這個(gè)距離成為“間隔(margin)”。如圖4所示,黑色實(shí)線就是最優(yōu)分類面,兩邊兩條虛線之間的幾何距離就是此時(shí)的最優(yōu)間隔。數(shù)據(jù)點(diǎn)離分類面越遠(yuǎn),分類的置信度也越高。
圖 4 SVM最優(yōu)分類面示意圖
SVM假設(shè)線性分類面的函數(shù)形式為
(1)
鑒于篇幅關(guān)系,我們略去推導(dǎo)過程。在最大化間隔的假設(shè)下,可以得到SVM的原目標(biāo)函數(shù)為: