
什么是數(shù)據(jù)挖掘
數(shù)據(jù)挖掘(Data Mining),又稱為數(shù)據(jù)庫中的知識發(fā)現(xiàn)(Knowledge Discovery in Database, KDD),就是從大量數(shù)據(jù)中獲取有效的、新穎的、潛在有用的、最終可理解的模式的非平凡過程,簡單的說,數(shù)據(jù)挖掘就是從大量數(shù)據(jù)中提取或“挖掘”知識。
數(shù)據(jù)挖掘相關(guān)的10個問題
NO.1 Data Mining 和統(tǒng)計分析有什么不同?
硬要去區(qū)分Data Mining和Statistics的差異其實是沒有太大意義的。一般將之定義為Data Mining技術(shù)的CART、CHAID或模糊計算等等理論方法,也都是由統(tǒng)計學(xué)者根據(jù)統(tǒng)計理論所發(fā)展衍生,換另一個角度看,Data Mining有相當(dāng)大的比重是由高等統(tǒng)計學(xué)中的多變量分析所支撐。但是為什么Data Mining的出現(xiàn)會引發(fā)各領(lǐng)域的廣泛注意呢?主要原因在相較于傳統(tǒng)統(tǒng)計分析而言,Data Mining有下列幾項特性:
1.處理大量實際數(shù)據(jù)更強勢,且無須太專業(yè)的統(tǒng)計背景去使用Data Mining的工具;
2.數(shù)據(jù)分析趨勢為從大型數(shù)據(jù)庫抓取所需數(shù)據(jù)并使用專屬計算機分析軟件,Data Mining的工具更符合企業(yè)需求;
3. 純就理論的基礎(chǔ)點來看,Data Mining和統(tǒng)計分析有應(yīng)用上的差別,畢竟Data Mining目的是方便企業(yè)終端用戶使用而非給統(tǒng)計學(xué)家檢測用的。
NO.2 Data Warehousing 和 Data Mining 的關(guān)系為何?
若將Data Warehousing(數(shù)據(jù)倉庫)比喻作礦坑,Data Mining就是深入礦坑采礦的工作。畢竟Data Mining不是一種無中生有的魔術(shù),也不是點石成金的煉金術(shù),若沒有夠豐富完整的數(shù)據(jù),是很難期待Data Mining能挖掘出什么有意義的信息的。
要將龐大的數(shù)據(jù)轉(zhuǎn)換成為有用的信息,必須先有效率地收集信息。隨著科技的進步,功能完善的數(shù)據(jù)庫系統(tǒng)就成了最好的收集數(shù)據(jù)的工具。數(shù)據(jù)倉庫,簡單地說,就是搜集來自其它系統(tǒng)的有用數(shù)據(jù),存放在一整合的儲存區(qū)內(nèi)。所以其實就是一個經(jīng)過處理整合,且容量特別大的關(guān)系型數(shù)據(jù)庫,用以儲存決策支持系統(tǒng)(Design Support System)所需的數(shù)據(jù),供決策支持或數(shù)據(jù)分析使用。從信息技術(shù)的角度來看,數(shù)據(jù)倉庫的目標(biāo)是在組織中,在正確的時間,將正確的數(shù)據(jù)交給正確的人。
許多人對于Data Warehousing和Data Mining時常混淆,不知如何分辨。其實,數(shù)據(jù)倉庫是數(shù)據(jù)庫技術(shù)的一個新主題,利用計算機系統(tǒng)幫助我們操作、計算和思考,讓作業(yè)方式改變,決策方式也跟著改變。
數(shù)據(jù)倉庫本身是一個非常大的數(shù)據(jù)庫,它儲存著由組織作業(yè)數(shù)據(jù)庫中整合而來的數(shù)據(jù),特別是指事務(wù)處理系統(tǒng)OLTP(On-Line Transactional Processing)所得來的數(shù)據(jù)。將這些整合過的數(shù)據(jù)置放于數(shù)據(jù)昂哭中,而公司的決策者則利用這些數(shù)據(jù)作決策;但是,這個轉(zhuǎn)換及整合數(shù)據(jù)的過程,是建立一個數(shù)據(jù)倉庫最大的挑戰(zhàn)。因為將作業(yè)中的數(shù)據(jù)轉(zhuǎn)換成有用的的策略性信息是整個數(shù)據(jù)倉庫的重點。綜上所述,數(shù)據(jù)倉庫應(yīng)該具有這些數(shù)據(jù):整合性數(shù)據(jù)(integrated data)、詳細和匯總性的數(shù)據(jù)(detailed and summarized data)、歷史數(shù)據(jù)、解釋數(shù)據(jù)的數(shù)據(jù)。從數(shù)據(jù)倉庫挖掘出對決策有用的信息與知識,是建立數(shù)據(jù)倉庫與使用Data Mining的最大目的,兩者的本質(zhì)與過程是兩回事。換句話說,數(shù)據(jù)倉庫應(yīng)先行建立完成,Data mining才能有效率的進行,因為數(shù)據(jù)倉庫本身所含數(shù)據(jù)是干凈(不會有錯誤的數(shù)據(jù)參雜其中)、完備,且經(jīng)過整合的。因此兩者關(guān)系或許可解讀為Data Mining是從巨大數(shù)據(jù)倉庫中找出有用信息的一種過程與技術(shù)。
NO.3 OLAP 能不能代替 Data Mining?
所謂OLAP(Online Analytical Process)意指由數(shù)據(jù)庫所連結(jié)出來的在線分析處理程序。有些人會說:「我已經(jīng)有OLAP的工具了,所以我不需要Data Mining?!故聦嵣蟽烧唛g是截然不同的,主要差異在于Data Mining用在產(chǎn)生假設(shè),OLAP則用于查證假設(shè)。簡單來說,OLAP是由使用者所主導(dǎo),使用者先有一些假設(shè),然后利用OLAP來查證假設(shè)是否成立;而Data Mining則是用來幫助使用者產(chǎn)生假設(shè)。所以在使用OLAP或其它Query的工具時,使用者是自己在做探索(Exploration),但Data Mining是用工具在幫助做探索。
更多詳細信息,請您微信關(guān)注“計算網(wǎng)”公眾號: