大數(shù)據(jù)驅(qū)動(dòng)的供應(yīng)鏈管理(Big Data Driven SCM) 需要首先理解供應(yīng)鏈中的四種行為:買(buy)、賣(sell)、移動(dòng)(move)和存儲(chǔ)(store);這四種行為對(duì)應(yīng)四種SCM杠桿(SCM levers):采購(gòu)(procurement)、市場(chǎng)(marketing)、運(yùn)輸(transportation)和倉(cāng)庫(kù)(warehouse)。根據(jù)52種SCM數(shù)據(jù)源與這四種行為杠桿的關(guān)系,可以繪制出如下關(guān)系網(wǎng)絡(luò)圖(圖2),從而幫助我們更好的理解不同數(shù)據(jù)源在整個(gè)供應(yīng)鏈網(wǎng)絡(luò)中的位置。
如此復(fù)雜的數(shù)據(jù)關(guān)系,如果不借助大數(shù)據(jù)分析的技術(shù)是無法將其轉(zhuǎn)化為企業(yè)供應(yīng)鏈可利用的價(jià)值的?,F(xiàn)在的企業(yè)往往收集大量的數(shù)據(jù)卻不知道如何利用(business collect more data than they know what to do with), 所以企業(yè)必須將數(shù)據(jù)不再看成信息資產(chǎn)而是戰(zhàn)略資產(chǎn),也就是說在所有企業(yè)都在努力收集這些供應(yīng)鏈數(shù)據(jù)的大環(huán)境下,擁有大量數(shù)據(jù)已經(jīng)不能成為企業(yè)絕對(duì)的競(jìng)爭(zhēng)優(yōu)勢(shì)了;企業(yè)如何通過其獨(dú)特的信息使用戰(zhàn)略(大數(shù)據(jù)驅(qū)動(dòng)的供應(yīng)鏈管理)才是建立更有力的供應(yīng)鏈競(jìng)爭(zhēng)優(yōu)勢(shì)的途徑。
圖 2:點(diǎn)擊查看大圖
2、進(jìn)化為知識(shí)共享型供應(yīng)鏈價(jià)值網(wǎng)絡(luò)
驅(qū)動(dòng)更為復(fù)雜的專注于知識(shí)分享和協(xié)作的供應(yīng)商網(wǎng)路,從而讓供應(yīng)商網(wǎng)絡(luò)不僅僅是完成交易而是帶來增值。
Enabling more complex supplier networks that focus>
圖 3:點(diǎn)擊查看大圖
3、供應(yīng)鏈能力的提升
大數(shù)據(jù)和高級(jí)分析技術(shù)正更快速的集成到供應(yīng)鏈能力(Supply Chain Capabilities)當(dāng)中。
Big data and advanced analytics are being integrated into optimization tools, demand forecasting, integrated business planning and supplier collaboration & risk analytics at a quickening pace.
德勤的調(diào)研顯示,當(dāng)前使用最多的前四種供應(yīng)鏈能力為:優(yōu)化工具,需求預(yù)測(cè),集成業(yè)務(wù)預(yù)測(cè)、供應(yīng)商協(xié)作和風(fēng)險(xiǎn)分析。更多見圖4.
These are the top four supply chain capabilities that Delotte found are currently in use form their recent study, Supply Chain Talent of the Future Findings from the 3rdAnnual Supply Chain Survey (free, no opt-in). Control tower analytics and visualization are also>
圖 4:點(diǎn)擊查看大圖
4、供應(yīng)鏈領(lǐng)域的顛覆性技術(shù)
64%的供應(yīng)鏈高管將大數(shù)據(jù)分析看成顛覆性的重要技術(shù),這是企業(yè)長(zhǎng)期變革管理的重要基礎(chǔ)。
64% of supply chain executives consider big data analytics a disruptive and important technology, setting the foundation for long-term change management in their organizations.
圖 5:點(diǎn)擊查看大圖
5、優(yōu)化整合供應(yīng)鏈配送網(wǎng)絡(luò)
利用基于大數(shù)據(jù)的地理分析技術(shù) (Geoanalytics) 來整合優(yōu)化供應(yīng)鏈配送網(wǎng)絡(luò)。
Using geoanalytics based>
圖 6:點(diǎn)擊查看大圖
6、供應(yīng)鏈問題的優(yōu)化
對(duì)供應(yīng)鏈問題的優(yōu)化。大數(shù)據(jù)可以幫助企業(yè)將對(duì)供應(yīng)鏈問題的反應(yīng)時(shí)間提升41%,將供應(yīng)鏈效率提升10%甚至超過36%,跨供應(yīng)鏈的整合提升至36%。
Big data is having an impact>
圖 7:點(diǎn)擊查看大圖
7、供應(yīng)鏈運(yùn)營(yíng)的整合
將大數(shù)據(jù)分析集成到供應(yīng)鏈運(yùn)營(yíng)中可以將訂單滿足周期提升4.25倍、將供應(yīng)鏈效率的提升2.6倍
Embedding big data analytics in operations leads to a 4.25x improvement in order-to-cycle delivery times, and a 2.6x improvement in supply chain efficiency of 10% or greater. Accenture found that embedding big data into supply chain operations accelerates supply chain processes a minimum of 1.3x over using big data>