面向讀者:供應(yīng)鏈管理從業(yè)者 | 供應(yīng)鏈管理系統(tǒng)的IT從業(yè)者 | 供應(yīng)鏈管理高管 | 企業(yè)IT高管 | 供應(yīng)商
閱讀目標(biāo):這篇文章可以幫助您宏觀的快速了解大數(shù)據(jù)技術(shù)對(duì)供應(yīng)鏈管理的影響,幫助您的企業(yè)未來(lái)在供應(yīng)鏈環(huán)節(jié)討論是否引入大數(shù)據(jù)技術(shù)打下一個(gè)概念基礎(chǔ)。你不一定真的看完或者理解全文,但至少可以為大家提供一些可信的數(shù)據(jù)參考,而不是盲目毫無(wú)頭緒的去“猜”大數(shù)據(jù)到底對(duì)未來(lái)的供應(yīng)鏈管理有什么影響。
關(guān)鍵標(biāo)簽:供應(yīng)鏈管理 | SCM | 大數(shù)據(jù) | Big Data
1462884445-6655-3417eb9bbd90189bd20e47
概 要
大數(shù)據(jù)可以為供應(yīng)商網(wǎng)絡(luò)(Supplier Networks) 提供更好的數(shù)據(jù)準(zhǔn)確性(Accuracy)、清晰度(Clarity)和洞察力(Insights),從而在共享的供應(yīng)網(wǎng)絡(luò)中實(shí)現(xiàn)更多的情境智能(Contextual Intelligence)。
Bottom Line: Big data is providing supplier networks with greater data accuracy, clarity, and insights, leading to more contextual intelligence shared across supply chains.
有前瞻目光的制造商們正在將80%或更大比例的供應(yīng)網(wǎng)絡(luò)經(jīng)營(yíng)活動(dòng)構(gòu)建在其企業(yè)外部,他們利用大數(shù)據(jù)和云計(jì)算技術(shù)來(lái)突破傳統(tǒng)ERP系統(tǒng)和供應(yīng)鏈系統(tǒng)的局限性。對(duì)于商業(yè)模式基于快速產(chǎn)品周期迭代和產(chǎn)品上市速度的制造商,傳統(tǒng)的ERP/SCM系統(tǒng)僅僅是為了完成訂單交付、發(fā)運(yùn)和交易數(shù)據(jù)而設(shè)計(jì)的,這樣的傳統(tǒng)系統(tǒng)的擴(kuò)展性極其有限,根本無(wú)法滿足當(dāng)下供應(yīng)鏈管理所面臨的種種挑戰(zhàn),已經(jīng)成為企業(yè)供應(yīng)鏈管理的瓶頸。
Forward-thinking manufacturers are orchestrating 80% or more of their supplier network activity outside their four walls, using big data and cloud-based technologies to get beyond the constraints of legacy Enterprise Resource Planning (ERP) and Supply Chain Management (SCM) systems. For manufacturers whose business models are based>
1、情境智能 Contextual Intelligence
目前,由供應(yīng)鏈產(chǎn)生的數(shù)據(jù)的規(guī)模(scale)、廣度(scope)和深度(depth)都在加速增長(zhǎng),為情景智能(contextual intelligence)驅(qū)動(dòng)的供應(yīng)鏈提供了充足的數(shù)據(jù)基礎(chǔ)。
The scale, scope and depth of data supply chains are generating today is accelerating, providing ample data sets to drive contextual intelligence.
下面“圖1”很有意思,它收集了整個(gè)供應(yīng)鏈中的52種不同的數(shù)據(jù)源(包括結(jié)構(gòu)化/半結(jié)構(gòu)化/非結(jié)構(gòu)化數(shù)據(jù)),并從大數(shù)據(jù)的三個(gè)維度(3Vs)進(jìn)行了統(tǒng)計(jì)分析,數(shù)據(jù)量(Volume)/數(shù)據(jù)速度(Velocity)和數(shù)據(jù)多樣性(Variety)。其中很明顯絕大部分?jǐn)?shù)據(jù)都是從企業(yè)外部產(chǎn)生的。有前瞻性的制造商已經(jīng)開(kāi)始將大數(shù)據(jù)作為更廣泛供應(yīng)鏈協(xié)作的催化劑。
The following graphic provides an overview of 52 different sources of big data that are generated in supply chains Plotting the data sources by variety, volume and velocity by the relative level of structured/unstructured data, it’s clear that the majority of supply chain data is generated outside an enterprise. Forward-thinking manufacturers are looking at big data as a catalyst for greater collaboration.
圖 1:點(diǎn)擊查看高清大圖
值得注意的是,在核心交易系統(tǒng)范疇內(nèi),傳統(tǒng)的ERP, SRM和CRM系統(tǒng)通常在企業(yè)內(nèi)部的數(shù)據(jù)量(Volume)是很高的,但是這些數(shù)據(jù)放在整個(gè)52中數(shù)據(jù)源框架下只占了很小的比例,這就是為什么圖1中的“核心交易系統(tǒng)數(shù)據(jù)”處于縱向較低的位置。如果你看右上角可以發(fā)現(xiàn),高數(shù)據(jù)量和速度的非結(jié)構(gòu)化數(shù)據(jù)大都是與“客戶”交互的數(shù)據(jù):社交數(shù)據(jù)、在線調(diào)研、移動(dòng)位置傳感設(shè)備等。
大數(shù)據(jù)分析(BDA – Big Data Analytics)技術(shù)在供應(yīng)鏈管理領(lǐng)域的應(yīng)用通常被稱為:供應(yīng)鏈大數(shù)據(jù)分析技術(shù) SCM Big Data Analytics,它可以被定義為一個(gè)流程,即,將高級(jí)數(shù)據(jù)分析(Advanced Analytics)技術(shù)與供應(yīng)鏈管理理論相結(jié)合并應(yīng)用于更大的數(shù)據(jù)集合當(dāng)中,這個(gè)數(shù)據(jù)集合的體量、速度和多樣性需要借助于大數(shù)據(jù)技術(shù)工具來(lái)分析;同時(shí),需要借助供應(yīng)鏈管理專業(yè)人士的技能通過(guò)提供精準(zhǔn)實(shí)時(shí)的商業(yè)洞察來(lái)持續(xù)感知和反饋解決SCM相關(guān)的問(wèn)題。
SCM Big Data Analytics is the process of applying advanced analytics techniques in combination with SCM theory to datasets whose volume, velocity or variety require information technology tools from the Big Data technology stack; leveraging supply chain professionals with the ability to continually sense and respond to SCM relevant problems by providing accurate and timely business insights.