這意味什么?本篇特別報(bào)道將會(huì)審視這項(xiàng)新科技的崛起,探索它對(duì)工作,教育,政策的潛在影響,思考它在道德和監(jiān)管方面的作用。同時(shí),本文還思考了能從機(jī)器問題最初的答案中學(xué)到的東西。AI引發(fā)的擔(dān)憂和熱情不相上下,同時(shí)帶來了很多問題,然而值得記住的是,其中的很多問題我們?cè)谝郧岸荚鴨栠^,并已經(jīng)有了答案。
2.技術(shù):從無法工作到神經(jīng)網(wǎng)絡(luò)
人工智能的繁榮基于傳統(tǒng)與現(xiàn)代想法的結(jié)合。
人工智能如何從剛開始的傲慢與失望,突然成為科技界最熱門的領(lǐng)域呢?人工智能(artificial intelligence)這個(gè)術(shù)語最早被寫在1956年的一份研究計(jì)劃中,該計(jì)劃聲稱「如果一個(gè)精心挑選的科學(xué)家小組花一個(gè)夏天一起研究,就能使機(jī)器解決各種人類無法解決的問題……」,從而實(shí)現(xiàn)重大的進(jìn)步。那被證明只是瘋狂過度地樂觀,人工智能雖然偶有突破,但其承諾的遠(yuǎn)比其所能提供的多得多。最終,大多研究者都避免使用這個(gè)術(shù)語,而更喜歡用「專家系統(tǒng)」或「神經(jīng)網(wǎng)絡(luò)」?,F(xiàn)在「人工智能」的名譽(yù)恢復(fù)和重新興起要追溯到2012年被稱為ImageNet挑戰(zhàn)賽的在線競賽。
ImageNet是一個(gè)擁有數(shù)百萬張圖片的在線數(shù)據(jù)庫,所有圖片都有人工做的標(biāo)簽。對(duì)于任何給定詞,例如「氣球」或「草莓」,ImageNet里都能找到上百張對(duì)應(yīng)的圖片。每年的ImageNet競賽鼓勵(lì)該領(lǐng)域的人在計(jì)算機(jī)識(shí)別和自動(dòng)標(biāo)記圖片上進(jìn)行比賽,并衡量他們的進(jìn)展。這些系統(tǒng)首先使用被正確標(biāo)記的圖片集進(jìn)行訓(xùn)練,然后挑戰(zhàn)標(biāo)記之前沒見過的測(cè)試圖片。在后續(xù)的研討會(huì)上,優(yōu)勝者會(huì)分享并討論他們的技術(shù)。2010年獲勝的系統(tǒng)可以正確標(biāo)記72% 的圖片(人類平均有95% 的準(zhǔn)確率)。2012年,多倫多大學(xué)的Geoff Hinton帶領(lǐng)的團(tuán)隊(duì)實(shí)現(xiàn)了85% 的準(zhǔn)確率,這要?dú)w功于一項(xiàng)叫「深度學(xué)習(xí)」的新技術(shù)。這帶來了一種長遠(yuǎn)快速的改進(jìn),在2015年的ImageNet競賽上,一個(gè)深度學(xué)習(xí)系統(tǒng)以96% 的準(zhǔn)確率第一次超過了人類。
2012年的成果被認(rèn)為是一項(xiàng)突破,但Yoshua Bengio說,他們依靠的是「結(jié)合以前已經(jīng)有了的東西?!筜oshua Bengio是蒙特利爾大學(xué)的計(jì)算機(jī)科學(xué)家,他與Hinto 以及另外幾個(gè)人被稱為深度學(xué)習(xí)的先驅(qū)。大體上,這項(xiàng)技術(shù)使用了大量的計(jì)算和訓(xùn)練數(shù)據(jù),對(duì)來自人工智能發(fā)展初期的一個(gè)舊思路進(jìn)行改進(jìn),這個(gè)舊思路也就是人工神經(jīng)網(wǎng)絡(luò)(ANN)——這是生物學(xué)啟發(fā)的人工神經(jīng)元(腦細(xì)胞)網(wǎng)絡(luò)。
在生物大腦中,每個(gè)神經(jīng)元都能被其它神經(jīng)元觸發(fā),將輸出的信號(hào)饋送給另一個(gè)神經(jīng)元,而且此神經(jīng)元的輸出也能繼續(xù)觸發(fā)其它神經(jīng)元。一個(gè)簡單的ANN 網(wǎng)絡(luò)有一個(gè)輸入神經(jīng)元層,在這里數(shù)據(jù)被饋送進(jìn)網(wǎng)絡(luò)中;還有一個(gè)輸出層輸出結(jié)果,中間可能還會(huì)有三兩個(gè)隱藏層對(duì)信息進(jìn)行處理。(實(shí)際中,ANN 網(wǎng)絡(luò)全部在軟件中模擬。)網(wǎng)絡(luò)中的每一個(gè)神經(jīng)元都有一系列的「權(quán)重」和一個(gè)「激活函數(shù)」控制著輸出的信號(hào)發(fā)射。訓(xùn)練一個(gè)神經(jīng)網(wǎng)絡(luò)涉及到對(duì)神經(jīng)元權(quán)重的調(diào)整,以便一個(gè)給定的輸入產(chǎn)生期望的輸出。ANN 在20世紀(jì)90年代早些時(shí)候就已經(jīng)實(shí)現(xiàn)了一些有用的結(jié)果,例如識(shí)別手寫數(shù)字。但在完成更為復(fù)雜的任務(wù)上,ANN 陷入了困境。
在過去的十幾年中,新技術(shù)的出現(xiàn)和對(duì)激活函數(shù)的一種簡單調(diào)整使得訓(xùn)練深度網(wǎng)絡(luò)變得可行。同時(shí),互聯(lián)網(wǎng)的興起產(chǎn)生了數(shù)十億可用于目標(biāo)訓(xùn)練的文檔、圖片、視頻數(shù)據(jù)。這所有的一切都需要大量的數(shù)字操作能力,而2009年左右當(dāng)幾個(gè)人工智能研究團(tuán)體意識(shí)到個(gè)人計(jì)算機(jī)和視頻游戲機(jī)上用于生成精致畫面的GPU 也同樣適用于運(yùn)行深度學(xué)習(xí)算法之后,計(jì)算能力也不再是個(gè)問題了。斯坦福大學(xué)由吳恩達(dá)帶領(lǐng)的一個(gè)人工智能團(tuán)隊(duì)發(fā)現(xiàn)GPU 能夠幾百倍地加速深度學(xué)習(xí)系統(tǒng)。然后,訓(xùn)練一個(gè)四層的神經(jīng)網(wǎng)絡(luò)突然就變得很快了,由之前需要花費(fèi)幾周的時(shí)間變成了不到一天時(shí)間。GPU 生產(chǎn)商N(yùn)VIDIA 的老總黃仁勛說這是一個(gè)令人高興的對(duì)稱:GPU 這一游戲工作者用于為游戲玩家構(gòu)建幻想世界的芯片也能用于幫助計(jì)算機(jī)通過深度學(xué)習(xí)理解真實(shí)世界。
ImageNet 的結(jié)果顯示了深度學(xué)習(xí)的能力。突然間,深度學(xué)習(xí)就獲得了關(guān)注——不只是在人工智能界,而是在整個(gè)科技產(chǎn)業(yè)界內(nèi)!深度學(xué)習(xí)系統(tǒng)因此變得更加的強(qiáng)大:20或30層的網(wǎng)絡(luò)變得很常見,微軟的研究人員曾建立過152層的網(wǎng)絡(luò)。更深層的網(wǎng)絡(luò)能進(jìn)行更高水平的抽象并產(chǎn)生更好的結(jié)果,事實(shí)證明這些網(wǎng)絡(luò)擅長解決眾多領(lǐng)域的難題。