總而言之,長期以來復(fù)雜性科學(xué)就是一個非常具有包容性的學(xué)科。它是各種數(shù)理方法、工程技術(shù)的大熔爐。所以,將深度學(xué)習(xí)融入復(fù)雜系統(tǒng)是一個必然趨勢。
參考文獻(xiàn)
1.Jean N, Burke M, Xie M, et al. Combining satellite imagery and machine learning to predict poverty.[J]. Science, 2016, 353(6301):790-794.
2.Blumenstock J E. Fighting poverty with data[J]. Science, 2016, 353(6301):753-754.
3.Helbing D, Moln T. Social Force Model for Pedestrian Dynamics[J]. Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1995, 51(5):4282-4286.
4.Hang Su, Yinpeng Dong, Jun Zhu, Haibin Ling, and Bo Zhang, Crowd Scene Understanding with Coherent Recurrent Neural Networks, Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16), 2016
5.Wei Li , Melvin Gauci and Roderich Gro: Turing learning: a metric-free approach to inferring behavior and its application to swarms, https://arxiv.org/pdf/1603.04904v2.pdf
6.T. Miklov: Efficient Estimation of Word Representations in Vector Space, 2013
7.Perozzi B, Al-Rfou R, Skiena S. DeepWalk: Online Learning of Social Representations[J]. arXiv preprint arXiv:1403.6652, 2014.
8.Aditya Grover, Jure Leskovec. node2vec: Scalable Feature Learning for Networks. KDD 2016.
9.R Fu et al: Learning Semantic Hierarchies via Word Embeddings, Meeting of the Association for Computational Linguistics, 2014
10.Lin Y, Liu Z, Sun M, et al. Learning entity and relation embeddings for knowledge graph completion[J]. 2015.
11.Defferrard M, Bresson X, Vandergheynst P. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering[J]. 2016.
12.Niepert M, Ahmed M, Kutzkov K. Learning Convolutional Neural Networks for Graphs[J]. 2016.
13.Mehta P, Schwab D J. An exact mapping between the Variational Renormalization Group and Deep Learning[J]. Computer Science, 2014.
雷鋒網(wǎng)原創(chuàng)文章,轉(zhuǎn)載請注明來源出處