基于上述分析,我們可以從三個方面努力排除低質(zhì)量生物特征信號對識別性能的影響:
■研究高性能的成像硬件平臺
■提高識別算法的魯棒性
■在生物識別系統(tǒng)中引入智能的質(zhì)量評價軟件模塊,只容許較高質(zhì)量的生物特征信號進(jìn)行注冊或識別。
在這些措施中設(shè)計有效的質(zhì)量評價算法最實際。因為再魯棒的識別算法能夠接受的信號質(zhì)量也是有限的。雖然已經(jīng)有高性能的生物特征獲取裝置面世,但是價格十分昂貴,也解決不了根本問題。所以研究生物特征的質(zhì)量評價算法對于識別系統(tǒng)性能的提高具有重要意義。
生物特征信號的質(zhì)量評價可看做一個兩類模式識別問題——將采集到的生物特征分為合格和不合格兩種情況。如果要對合格信號量化打分,還要將評價指標(biāo)定量化。生物特征信號的質(zhì)量評價問題是一個比較困難的問題,因為造成特征信號質(zhì)量差的原因千差萬別,即負(fù)樣本的種類太多,不勝枚舉,很難設(shè)計一個分類器將所有的正負(fù)樣本區(qū)分開。需要通過質(zhì)量評價來過濾的低質(zhì)量生物特征一般包括存在離焦模糊或運動模糊的圖像,信噪比太低的信號,遮擋的圖像等。一般可以從空域和頻域兩個角度出發(fā)去設(shè)計質(zhì)量評價算法。
從產(chǎn)品實用化的角度考慮,生物識別系統(tǒng)現(xiàn)在遇到的最大的瓶頸之一就是信號的質(zhì)量評價。一方面,為了拓寬系統(tǒng)的適用范圍,提高產(chǎn)品的易用性,對用戶更友好,為此,研究人員希望系統(tǒng)能在生物特征質(zhì)量要求較低的條件下運作,但是同時又要求系統(tǒng)能有穩(wěn)定的高精度。為了平衡這個矛盾,設(shè)計“穩(wěn)、快、準(zhǔn)”的質(zhì)量評價算法將是必由之路。
4、生物信號的定位與分割技術(shù)
經(jīng)過處理后的掌紋紋路更清晰了。從生物特征獲取裝置采集得到的原始信號一般不僅包括生物特征本身,還包括背景信息,例如原始的虹膜圖像中包括虹膜、瞳孔、鞏膜、眼皮和睫毛等多個區(qū)域,真正能有效鑒別人們身份的圖像內(nèi)容也就在虹膜區(qū)域。所以必須從原始信號中分割出感興趣內(nèi)容進(jìn)行特征提取。定位和分割算法一般都是基于生物特征在圖像結(jié)構(gòu)和信號分布方面的先驗知識。例如人臉檢測就是要從圖像中找到并定位人臉區(qū)域,一直是計算機視覺領(lǐng)域的研究熱點。
2001年美國的Viola和Jones提出了用易于計算的Harr小波特征來描述人臉模式,用AdaBoost來訓(xùn)練人臉檢測分類器,取得了人臉檢測領(lǐng)域的突破性進(jìn)展,實現(xiàn)了實時檢測視頻中的人臉圖像,而且準(zhǔn)確率也非常高。這個方法對計算機視覺和生物識別領(lǐng)域的影響都很大,現(xiàn)在商業(yè)化的人臉識別系統(tǒng)基本上都是使用這種人臉檢測方法或者其變種。而且這種通過機器學(xué)習(xí)訓(xùn)練弱分類器的方法也被推廣到了一般視覺對象的檢測和識別上。指紋的分割算法一般是基于指紋區(qū)域和背景區(qū)域的圖像塊灰度方差的差異特性虹膜的定位主要利用瞳孔/虹膜/鞏膜存在較大的灰度跳變并且成圓形的邊緣分布結(jié)構(gòu)特征;掌紋的定位一般是基于手指之間的參考點來構(gòu)建參考坐標(biāo)系。
5、生物特征信號增強技術(shù)
得到了分割后的特征區(qū)域后,有的生物特征識別方法需要在特征提取前對感興趣區(qū)域進(jìn)行增強,主要目的包括去噪和凸顯特征內(nèi)容。例如人臉和虹膜圖像一般用直方圖均衡化的方法增強圖像信息的對比度;指紋一般用頻域的方法得到脊線分布的頻率和方向特征后進(jìn)行紋路增強對于比較模糊的生物特征信號,可以考慮使用超分辨率的方法或者逆向濾波的方法進(jìn)行增強。
6、生物特征信號的校準(zhǔn)技術(shù)
為了克服不同時刻采集的生物特征信號之間的平移、尺度和旋轉(zhuǎn)變換,需要將參與比對的兩個生物特征進(jìn)行對齊。有的生物特征校準(zhǔn)在特征提取之前完成,例如常用主動形狀模型和主動表觀模型進(jìn)行人臉對齊;有的生物特征校準(zhǔn)的過程就是特征匹配的過程。生物特征信號的校準(zhǔn)結(jié)果對于識別精度的影響很大,所以也有學(xué)者認(rèn)為生物特征識別最重要的問題是校準(zhǔn)技術(shù)。
7、生物特征表達(dá)與抽取技術(shù)
對于生物特征識別,不管是外行還是內(nèi)行,人們首先想到的問題就是機器是用什么特征進(jìn)行身份識別的?什么是生物特征信號中凸現(xiàn)個性化差異的本質(zhì)特征?這就是生物識別的基本的、原理性的問題。對于這個問題在個別的生物特征識別領(lǐng)域得到了共識,例如指紋識別,大家都公認(rèn)細(xì)節(jié)點(包括末梢點和分叉點)是描述指紋特征的最佳表達(dá)方式,所以國際上就有統(tǒng)一的基于細(xì)節(jié)點信息的指紋特征模板交換標(biāo)準(zhǔn),給不同廠商的指紋識別系統(tǒng)的兼容性和數(shù)據(jù)交換帶來了便利。但是在其他生物識別領(lǐng)域,例如人臉、虹膜、掌紋等領(lǐng)域研究人員還在不斷探索最佳的特征表達(dá)模型。雖然這些領(lǐng)域的特征表達(dá)方法的種類繁多,部分算法也已經(jīng)取得了很好的識別性能,但是人臉識別、虹膜識別、掌紋識別的根本問題——“什么是人臉、虹膜或掌紋圖像的本質(zhì)特征及其有效表達(dá)?”一直沒有得到權(quán)威和普遍認(rèn)同的回答。